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Overview of presentation

e Motivation: Blue sky science
— Nuclear Physics — Gamma spectroscopy
— Neutrino Physics — Double beta decay

* Imaging Applications
e Future technology and direction



Blue sky science: Nuclear Physics



Gamma spectroscopy

Precision spectroscopy of nuclear states
 Gamma-ray (hence level) energies

 Complex level schemes (y" coincidences)
(high resolution essential —i.e. Ge)

Precision probes of the nuclear wave function:

 Lifetimes (transition matrix elements)
e Electromagnetic moments
 Cross-sections for direct reactions



How technology enables the science programme
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Gamma-Ray Energy Tracking Arrays Worldwide

GRETA (USA)

AGATA (Europe)

u -

120 Ge crystals
30 Quad “modules”
~17 cm internal diameter

180 Ge crystals
60 Triple “clusters”
~23 cm internal diameter



Gamma spectroscopy
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The AGATA science case

Astrophysical

Nuclear Shell Structure Nuclear Pairing Fusion & Fission
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What is AGATA?

13 Countries, >40 Instltutlons

etric AGATA Triple Cryostat

- integration of 111 high resolution
spectroscopy channels
- cold FET technology for all signals

- B

* Solid Sphere of Ge material: Solid
angle coverage ~ 82 %

e 36-fold segmentation of crystal

* Track each gamma interaction through
the crystal

* Reconstruct and disentangle gammas

Challenges: 180 hexagonal crystals: 3 shapes

- mechanical precision

e e 3 fold clusters (cold FET): 60 all equal
| e Inner radius (Ge): 23.5cm
AGATA Definition: NIM A 668 (2012) 26 Amount of germanium: 362 kg

36-fold segmentation 6480 segments




The need for AGATA

The challenge of the new generation of radioactive beam facilities

* Low intensity
FAIR (Germany) * High background Radioactive beam of 46Cr
SPIRAL (France)
SPES (ltaly)
HIE-ISOLDE (CERN)

* Large Doppler broadening 2+ -> 0

4{]‘]1]4]]1”%,% '|n|\1r l‘]rlxli];c']“w%

n
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* High counting rates
* High gamma-ray multiplicities

Counts / 8 keV
LN
=

* High efficiency 10F AGATA (GsI) TP
e Distinguish gammas from b/g 00 B reray Thev]

The ideal y-ray

* Highly position sensitive
spectrometer

* High data throughput
e Can distinguish multiple gammas




The concept of y-ray tracking

4
1 .
Highly segmented interlgcegg:e%i nts
HPGe detectors P Evaluation of permutations
(X.y,Z,E,b), of interaction points
Pulse Shape Analysis

to decompose
recorded waves (o)

2

Digital electronics
to record and
process signals

Reconstructed y rays




UK AGATA Project (STFC): 2020-24

Next phases of AGATA (SPES and FAIR)

* AGATA triple-cluster modules

* Detector prototyping and characterisation —__

Mechanical support structure \

 Electronics and Firmware

* Pulse-Shape Analysis

Simulation
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Characterisation Objectives

e How does the position performance of each AGATA detector vary
with:
— Crystal shape / effective segmentation
— Impurity gradient Agalacansile
Lead collimators

— HV .

— AXIis orientation

BGO detectors

.
0 |H| 0

— Differential cross talk

\
1mm @ W collimator —— Steel plate
5mm @ W collimator—— — Lead

/ A
137Cs Source




Characterisation Objectives

How does the position performance of each AGATA detector vary?
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Amplitude [keV]
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Challenges in pulse-shape analysis
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Challenges in pulse-shape analysis

signal basis
generation

Signal matching

(grid search)

¢ : :
Experimental (scanning)

e long acquisition times
e experimental conditions change
-

(Analytical (calculated)

e Physics model, Complex Electric fields
e Impurity/n-damage

e electronics response

e temperature etc

\_

(Grid Search A

e Require positions at resolution < 5mm
e Dataset is ~ 50,000 points (37x121)
e PSA-grid search needs to be very fast (~ ms)

. _J

(University of Liverpool:

e Experimental validation of Simulation.

e Machine Learning for Advanced Signal Inference
e High resolution simulations of new detectors.

e Novel PSA techniques for accelerated Grid Search




Novel Algorithm Development for PSA

Graph-accelerated techniques try to organize data and form <>Singu|ar Value Decomposition
efficient searches E 8 ’Adaptive Grid Search
» Search spaces can be Non-Euclidean, Embedded spaces. E
» Searching n points can be O log(n). E 6 - € Particle swarm Optimization
» Processing rates in region (12-400) kHz. ‘g" @ Geneticalgorithm
3 4= ‘KD_Trees ’Wavelet method
Machine Learning uses a simulated basis to learn trendsvia § ‘Least square methods
inference e.g. Position Regression, Autoencoding & Fold g
tagging § 2 CNNs 4@ Full Grid Search
» No searching is performed whatsoever. '§
» Simulated basis only needed for training. “ 0 p— _c" hlr
» Needs an appropriate model & good data. Computation Time/event/detector
» Can be used for hyper-efficient signal compression.
» Useful for determining Fold accurately. Courtesy of Fraser Holloway, University of Liverpool

F.Holloway@liverpool.ac.uk

Fraser Holloway - F.Holloway@liverpool.ac.uk



The AGATA journey...

2012-2014 2014-2021 2021-2026 2027 ->
GSI, Germany GANIL, France Legnaro, Italy FAIR, Germany
~25 detectors 45 -> detectors 60 -> detectors 80-90 detectors

v

o
3

R HISPEC/

AGATA at LNL AGATA at NUSTAR

AGATA at GSI AGATA at GANIL

Reaccelerated RIBs: In-flight RIBs:
- Coulomb Excitation, Direct Reactions, MNT, Deep - Relativistic Coulomb
Inelastic, Fusion Excitation, Knockout,
- Direct and inverse kinematics B ~ 10% Fragmentation.
— B ~50%




New MoU signed and in operation
Evolution of AGATA to 4m

From 2021

2021--

LNL, Italy

Stable beams

SPES radioactive beams

AGATA at LNL 3T[ in 10 yea rS

The first campaign in the
new MoU
60 > detectors

Signed by 11 countries (14 Parties)




Blue sky science: Neutrino Physics



The LEGEND Experiment

Large Enriched

/ \ Germanium Experiment
\A for Neutrinoless B3 Decay

<Andy Boston, ajboston@liverpool.ac.uk>



Introduction to LEGEND

 The LEGEND collaboration proposes a OvBB decay search experiment,
using a 1 tonne of ’°Ge enriched detectors

* The programme follows a staged approach:

 LEGEND-200: a 200 kg mass experiment, installed in the GERDA LAr cryostat
at LNGS, Gran Sasso

* |tis an approved experiment at LNGS, with data taking in progress

 LEGEND-1000: a 1T experiment will require a new underground infrastructure
and additional R&D to further reduce backgrounds

 LEGEND-1000 to start running later this decade



The LEGEND-1000 Discovery Sensitivity

“The collaboration aims to develop a phased, 76Ge-based double-beta decay experimental program
with discovery potential at a half-life beyond 10%8 years...”

* What is required for a discovery of OvBB decay at a half-life of 10?8 years?

e This is less than one decay per year per ton of material

— Need 10 ton-years of data to get a few counts

— Need a good signal-to-background ratio Simulated example spectrum, after cuts,
to get statistical significance . from 10 years of data

o

* Avery low background event rate e
o

° i i 2

The best possible energy resolution s ‘ OVBB (Ty/, = 108 yr)

O 3

HHJII‘II‘ |

1940 1960 1980 2000 2020 2040 2060 2080

Energy (keV)



LEGEND 200 Overview

A merger of the GERDA and MJD demonstrators @LNGS
Re-use GERDA LAr cryostat: optimise geometry

Low-background MJD front-end electronics, further from detectors

Refinements to:

* Veto system
e Calibration systems
 DAQ

Trial PEN
Physics data taking in progress
STFC Experiment support for M&O

New detectors for LEGEND:

P-type Inverted-Coaxial Point Contact

Larger mass : > 2 kg/detector

(Wd/A%) pIdY U193

Large Enriched
Germanium Experiment
for Neutrinoless BB Decay






Innovation toward LEGEND-1000: ¢""Ge Detectors

* Superb energy resolution: ¢/ Qg =0.05%
* P-type detectors: Insensitive to alphas on n* outer contact
* Pulse-shape discrimination against background events

* Large-mass ICPC detectors: About 4 times lower backgrounds
compared to BEGes / PPCs

* Proven long-term stable operation in LAr
LEGEND (ICPC)

Speed [cm/us] .
with paths and isochrones

well —
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The LEGEND-1000 Experiment: Overview

1000 kg of enriched Ge detectors (92% "°Ge)

* Underground-sourced LAr active shield

* 2.6 kg average mass e Arranged in 4 modules

* Mounted in “strings” using components e ~100 detectors per module
made from electro-formed Cu and

scintillating plastic, PEN  nstallation g
Gloveboxes | M

il |

i
A

e Dual fiber-curtain LAr instrumentation
e EFCu Reentrant tubes

i

| = i

Ge s A
Strings \ :‘ : . A1 B ‘ :
| | |

Tubes 1

Water
Shield

ICPC
Ge Detector

‘ LAr Cryostat
/i o

WLS Fiber
Curtain




LEGEND-1000 Baseline Design: Underground Site

* Adeep-underground site is needed to shield the
experiment from backgrounds generated by
cosmic rays

* Baseline site: The SNOLAB “Cryopit”

— 2 km underground (6000m water equivalent) Lock System

— In an active nickel mine in Sudbury, Ontario Work deck &

. . glove boxes
— Vertical access through mine shaft

Isolation valves

e Alternative site: LNGS (lItaly)
— 3500m water equivalent depth

Re-entrant tubes
(UGLAr)

— Lower overburden somewhat increases background
7m cryostat

— Horizontal access reduces cost/schedule risk

12m water tank

e Staff at both sites are actively involved in planning

~ 15m cavity

3

" LEGEND-1000 at SNOLAB



Technically Driven Schedule: LEGEND 1000

Calendar year

2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2036

[ Jep-1 [Jep-2

[ ]cp-3

Design and Planning

* Assumes technically driven funding profile

* Key Dates:

— CD-1 review

Enriched Ge Procurement

Enriched Detector Production

[] CD-4§

Cryostat Installation

Ancilliary Installation

Detector Installation and Commissioning

— First 250 kg Commissioning Complete (start of physics data)

— Early Finish: Commissioning Complete:

— Late Finish (36 months of float):

First Data and Pre-Operations

Operations

Q4 2024

Q2 2031-Q3 2032

Q1 2035
Q1 2038




Imaging applications: Nuclear



What constitutes a gamma imager?

* A detector, or detectors, sensitive to gamma radiation
* A means of measuring the direction of each detected gamma ray

* A means of displaying the data as an image showing the spatial
distribution and intensity of gamma radiation.

* This ‘gamma image’ is usually superimposed onto an image from a
conventional optical camera so that the physical location of the
sources can be readily identified.



What constitutes a Compton Imager?

Absorber

Scatterer
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Research : Compton Imaging

o Compton Cones of Response projected into image space




Research : Compton Imaging

o Compton Cones of Response projected into image space
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Research : Compton Imaging

o Compton Cones of Response projected into image space
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Research : Compton Imaging

o Compton Cones of Response projected into image space

VAT
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Research : Compton Imaging

o Compton Cones of Response projected into image space
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GRI+ Compton Camera
Imaging Trials

Mirion Technologies - Birchwood

@ NIVERSITY OF
\@ IVERPOOL m MCIHNROII_OOGIQ &
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Facilities Council




GRI+ System

Transportable Compton Imaging system

Three-tiered Compton Camera System
Planar Strip Si(Li) Detector
Planar Strip HPGe Detector
Coaxial HPGe Detector

Full HV/LV and digital system

LIDAR system




Double sided
germanium
strip detector

Detector systems fully characterized
ADL simulations performed
Grid search algorithm



MIRION

TECHNOLOGIES

M

Gri+: System status

 Si(Li) and Ge
Double Sided strip detectors

Excellent Performance

V1724 Caen digitisers, V1495 trigger
control

System characterisated

Laboratory tests : Complete

* Active demonstrator facility tests




Image Reconstruction GUI

Performed using a reconstruction application

Easy to use — analytical and iterative reconstruction techniques available

Inbuilt image filtering
options

Levelplot FWHM of Slice

Simple quantification

4000
!

of image quality

3000

Y (pixels)
Number of Overlaps
2000

(=3
8
(=]
T
0 100 200 300 400 500 600
300 Position (pixels)
X (pixels)
Contour Plot Controls FWHM Plot Controls Manual Fitting Fit Statistics Q Settings
Select Where to Fit Selection:
n 600 @ Maximum Row ;
Remake Contour Plot Save FWHM slice

Maximum Col

Erom Slider Remake FWHM Plot




Mirion Measurements

System taken to Mirion Technologies at
Birchwood Warrington to

Perform measurements not possible at the
University of Liverpool

Large stand-off (4-5 m)
High-activity sources (>10 MBQ)
Distributed sources (Rod sources)

Trials supported by Chris McPeake and Cory
Binnersley at Birchwood




Measurements

Initial measurement tests undertaken during summer 2022

High-activity source measurements not possible at the time (safety reasons)

High activity measurements taken
summer 2023

Analysis being finalised — production of
Images

Brief summary/highlights presented
here




LIDAR System

Quantify distance of surfaces from
camera

LIDAR provides 41T point cloud
Construct surfaces on point cloud

Project Compton reconstruction
Image onto LIDAR surfaces

Fused gamma-point cloud image




Point Cloud Imaging

*By)




Image Fusion

Raw projection and fusion — no post-processing




Future technology and direction

Point ”“like” contact detectors



Future technology and direction

e How can we improve performance further?
— Energy resolution
— Peak to Total
— Maintain or increase efficiency

— Improve long term reliability for segmented
detectors

e Consider small contact detectors



Example SAGe Well & Ortec Well Scans

LIQUID NITROGEN REMOVABLE LEAD COPPER LEAD
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SIGMA: detector status

* Spectroscopic gamma-ray imaging with
a Segmented, Inverted-coaxial
GerMAnium detector

* Potential single detector y-ray imaging
system for energy, security, healthcare
& environment

* P-type material for improved charge
collection
* 8 wedges
e 8 circular segments
e 1 front and bore

Azimuthal, @ Radial, r

Ex

60 mm

-
<

20 mm

10 mm

ww Gqq

6m
|e—
[

L

=+

>

70 mm

J. Wright et al. NIM, A 892 (2018) 84-92
M. Salathe et. al, NIM. A 868 (2017) 19-26



SIGMA: characterisation

* Scans of charge collections profile

e SSE cuts applied

// y G ™




Advanced germanium detector characterisation
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. . . System Test, Launch = m
Radiation Mapping & Gpartons TR

System/Subsystem TRL 8
. . . Development ]_ —
* Overview of select commercial technologies TRL 7
* Performance in decommissioning scenarios Technology
Demonstration it
* Next generation imaging [ .
* Single element Technology
Development
e Multi element R ——
* Advanced Scene Data Fusion Research to Prove
Feasibility

 SIGMA detector

Basic Technology
Research
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