

Engage. Explore. Empower.

Connecting Visionaries in Radiation Safety, Science and Industry

Annual Users' Conference

July 29 - August 2 | Omni Dallas Hotel, Dallas, TX

The iPA™ II Preamplifier More Than Just a Preamplifier

Dieter Pauwels

Product Line Manager Standard HPGe Detectors

Mirion Connect | Annual Users' Conference 2024

Dallas, Texas

Agenda

- Introduction
 - HPGe detector building blocks
 - Preamplifier models and history
 - How can a preamplifier facilitate troubleshooting and "Ease of Use"?
- The iPA preamplifier
 - What is it and connection to Lynx II
 - Troubleshooting and predictive maintenance
- The iPA II preamplifier
 - Enabling local data storage
 - Impact on troubleshooting and "Ease of Use"
- Broader preamp outlook and Q&A

Introduction

The four building blocks of the HPGe detector

Germanium detector

- Absorb and convert gamma-ray energy into proportional amount of electron-hole pairs
- Collect electrons and holes at detector contacts
- Detector preamplifier
 - Convert number of holes and electrons to a proportional voltage pulse
 - Access to <u>detector/cryostat/preamp</u> State-of-Health (SoH) information
- Detector cryostat
 - Vacuum chamber for thermal and electrical isolation
- Cooler
 - Cooling source for the germanium detector

dipstick cryostat

© 2024 Mirion Technologies . All rights reserved

The three HPGe preamplifier models explained

Always one principle

Chargesensitive integrator: Q → V

Two ways to restore

Three models

Advantages

Drawbacks

iPA

Cost; Max throughput Energy-rate limited (<=200 GeV/s); P/Z regulation

restoration

Dynamic charge

(RC feedback)

restoration

2101N/P (transistor switch)

ITRP (integrated switch in FET) No energy rate limit; OK for high energies

No energy rate limit;
Best noise performance

Cost; Throughput; Noise impact (LEGe, BEGe)

Cost; Only useable for low energies

Mirion history of the RC-feedback HPGe preamplifier

- Continuous performance improvements for >45 years:
 - Noise reduction for optimal energyresolution performance
- Troubleshooting:
 - Get access to preamplifier (not always obvious with lead shields!)
 - Measure resistances/voltages (multimeter)

- Maintain excellent 2002 noise performance
- Enable predictive maintenance
- Facilitate data-driven/remote troubleshooting
- Improve ease of use

Predictive maintenance & Troubleshooting: Which are critical preamp-provided SoH parameters?

Electrically-cooled
CP5-PLUS cryostat

SoH parameter	Short description	Importance / Indicative for
Detector leakage current	Leakage current	Diode issue? Vacuum issue? Preamp/cabling issue? FET broken?

LN2-cooled vertical dipstick cryostat

Engage. Explore. Empower.

© 2024 Mirion Technologies. All rights reserved.

Predictive maintenance & Troubleshooting: Which are critical preamp-provided SoH parameters?

Electrically-cooled	
CP5-PLUS cryostat	

SoH parameter	Short description	Importance / Indicative for	
Detector leakage current	Leakage current	Diode issue? Vacuum issue? Preamp/cabling issue? FET broken?	
PRTD1	HPGe temperature	HV ready? Vacuum issue?	
PRTD2	Cold-tip temperature	HV safety? Cooler issue?	

LN2-cooled vertical dipstick cryostat

Engage. Explore. Empower.

© 2024 Mirion Technologies. All rights reserved.

Predictive maintenance & Troubleshooting: Which are critical preamp-provided SoH parameters?

Importance /

Indicative for

LN2-cooled vertical dipstick cryostat

CP5-PLUS cryostat

Engage. Explore. Empower.

Predictive maintenance & Troubleshooting: Which are critical preamp-provided SoH parameters?

SoH parameter	Short description	Importance / Indicative for
Detector leakage current	Leakage current	Diode issue? Vacuum issue? Preamp/cabling issue? FET broken?
PRTD1	HPGe temperature	HV ready? Vacuum issue?
PRTD2	Cold-tip temperature	HV safety? Cooler issue?
Ambient Temperature	Electronics temperature	Ambient temperature issue?
LN2 level	LN2 level	Vacuum issue?

CP5-PLUS cryostat

"Ease of use": what is the challenge?

Steps	Activities
	HW parameter settings
	Energy calibration(s)
	Efficiency calibrations
Set up	Establish QA/QC Baseline&Window
	Measurement settings
	Analysis settings
Magazira	QA/QC
Measure	Samples
Interpret	Interpret/Review results

"Ease of use": what is the challenge?

Steps	Activities	Complexity
	HW parameter settings	HPGe uniqueness Use-case dependent
	Energy calibration(s)	Source measurement
	Efficiency calibrations	Geometry dependent
Set up	Establish QA/QC Baseline&Window	Determine good Baseline&Window
	Measurement settings	Use-case dependent
	Analysis settings	•
Magaura	QA/QC	Just measure
Measure	Samples	Just measure
Interpret	Interpret/Review results	Understand unexpected results

"Ease of use": what is the challenge?

Steps	Activities	Complexity	Classical approach
	HW parameter settings	HPGe uniqueness Use-case dependent	Use HPGe data sheet
	Energy calibration(s)	Source measurement	Use sources Use certificates
	Efficiency calibrations	Geometry dependent	Use ISOCS files
Set up	Establish QA/QC Baseline&Window	Determine good Baseline&Window	Understand expected & required HPGe performance Understand use case &
	Measurement settings	Use-case dependent	objectives
	Analysis settings	о о о о о о о о о о о о о о о о о о о	→ <u>Human expertise</u>
Measure	QA/QC	Just measure	Just do it
Measure	Samples	Just measure	Just do it
Interpret	Interpret/Review results	Understand unexpected results	<u>Human expertise</u>

The iPA preamplifier: Mirion going digital

The iPA preamplifier: What is it?

Pioneering digital HPGe preamp introduced by Mirion (since 2017)

- Maintain excellent 2002C noise performance and footprint
 - Kept analog pulse processing logic (AEM board)
- Digitalization
 - Connecting AEM to digital DEM board
 - Interface through USB
 - Remark: external USB isolator recommended
 - Continuous and remote SoH monitoring, not requiring:
 - Multimeter;
 - LN₂ NIM electronics (requires DEM FW V1.2 or beyond)
 - Easy access to recommended detector setup parameters
 - Bias voltage
 - Polarities
 - RT/FT

LiPA logic

Engage. Explore. Empower.

© 2024 Mirion Technologies. All rights reserved

iPA monitoring and control with the Lynx II MCA

- Available with most recent Lynx II FW update: FW V1.1
- USB connection to Lynx II
- Access via the Lynx II web client UI
 - Continuous data monitoring
 - Settings control
 - FW management
 - Common platform for:
 - MCA
 - iPA
 - CP5-PLUS & iCC
 - Common real-time SoH log file

LN2 Low Alarm Setpoint (%)	_	4		+
LN2 High Alarm Setpoint (%)	_	95		+
Output Stage Gain	1		~	
HV Inhibit on LN2 Alarm				
New AEM Firmware	Se	lect	No file o	hosen

Engage. Explore. Empower.

© 2024 Mirion Technologies. All rights reserved.

Predictive maintenance & Troubleshooting with iPA

The iPA II preamplifier: preparing for Mirion's digital future

The key iPA II improvement (vs iPA): local data storage

- The iPA II will have a local storage of detector-specific data
- Lynx II FW updates will be required to access/leverage detector data on iPA II
- Overview of iPA II data storage and Lynx II monitoring features: (*)

Detector outline drawing Detector data (factory tests)

Detector spec sheet Factory iPA config file

ISOCS files (incl. report + QA)

2024

2025

2026

2027

Lynx II FW upgrades:

Continuous improvement in algorithms for automated setup, performance corrections, predictive maintenance

View docs (spec sheet, drawing, reports)
Restore Factory iPA config
Leverage detector/ISOCS data files for
automated algorithms

(*) Timeline subject to change

"Ease of use" coming with local detector information

Steps	Activities	Analog preamp	iPA preamp	iPA II – Lynx II vision
	HW parameter settings	Use HPGe o		User selects
	Energy calibration(s)	Use certi		Use Case
	Efficiency calibrations	Use ISO(Understand o		Select geometry
Set up	Establish QA/QC Baseline&Window	required HPGe Understand	performance	Automated
	Measurement settings	object	ives	Based on Use
	Analysis settings	→ <u>Human</u>	<u>expertise</u>	Case selection
Measure	QA/QC	Just o	10 it	Just do it
ivicasule	Samples	Just C	ו טו	Just do it
Interpret	Interpret/Review results	<u>Human ex</u>	<u>kpertise</u>	Human expertise

"Ease of use" and "SoH monitoring": for who?

- Focus more on your core job;
- Spend/waste less time for:
 - Setup-related activities, also when use case/detector performance may change
 - Worrying about possible detector health issues
 - Determining actions in case of (upcoming) issues

Complete iPA II improvement overview (vs iPA)

Improvement for	Feature	Benefit
	Integrated USB isolator (note: with USB-C connector)	Easier installation, cleaner setup
Serviceability & User Experience	Storage of detector-specific data (staggered approach)	Local availability of detector reference data for efficient setup and troubleshooting; Ready for future Lynx II FW with automated algorithm features
Serviceability	Longer Slimline pig tails (incl. USB!)	Easy access to connectors (also in lead shields and for Slimline MAC/CP5-PLUS)
	Easier to tune and setup	Enabling replacements/upgrades in the field
	Improved HV filtering	
Quality	Enhanced AEM board protections	More rugged against arcing and ESD
	Flexible power-up logic	MCA-USB power-up sequence independent of order

Next step on Mirion preamp roadmap?

The three HPGe preamplifier models

Always one principle

Chargesensitive integrator:

Two ways to restore

Three models

Advantages

Drawbacks

iPA II

Cost: Max throughput **Energy-rate** limited (<=200 GeV/s); P/Z regulation

 $Q \rightarrow V$

Dynamic charge

(RC feedback)

restoration

2101N/P (transistor switch)

ITRP (integrated switch in FET)

No energy rate limit; OK for high energies

No energy rate limit: Best noise performance

Cost; Throughput; Noise impact (LEGe, BEGe)

Cost: Only useable for low energies

Engage. Explore. Empower.

Development of Intelligent transistor-reset preamps?

- Technical opportunity exists:
 - Leverage the existing iPA/iPA II DEM board
 - Designed to become a common add-on for other preamp types
- But... Does the market opportunity exist?
 - ITRP:
 - Used for X-ray applications with Ultra-LEGe (or smallest LEGe) detectors
 - Very small market...
 - 2101N/P:
 - Used for high-energy rate applications (typically for high 60Co rates)
 - Usually, iPA is good enough (up to 200 GeV/s)
 - Rather small market... (but may change?)

Thank you

