Engage. Explore. Empower. Connecting Visionaries in Radiation Safety, Science and Industry Annual Users' Conference July 29 - August 2 | Omni Dallas Hotel, Dallas, TX ### **Themes** - 1. Overview supporting NDA technologies - 2. Accuracy Improvement - 3. Flexibility of Deployment # Innovative Technologies for D&D #### **Patrick Chard** Director – Application Support, Systems & Services Mirion Connect | Annual Users' Conference 2024 Dallas, Texas # **D&D APPLICATIONS OVERVIEW** PRE SHUTDOWN - Assessment of costs - Radiation inspection of the facility - Modeling of scenarios SHUTDOWN OF FACILITY - Evaluation of contaminated areas - Mapping of large areas and walls BUILDING DEMOLITION - Rough sorting of rubble and debris - Sorting and characterization of liquid and solid wastes CLEAN UP TRANSPORT & STORAGE Verification of wastes before transport & storage FINAL VERIFICATION Final status measurement before returning the site to public MIRION 24 Connect Conference - Comprehensive range of on-site environmental monitoring and laboratory sample measurements - Radiation protection of workforce (ALARA) and sample characterization Engage. Explore. Empower. © 2024 Mirion Technologies. All rights reserved. # NDA System Types - Gamma - Using gamma-rays: - Gross gamma counting - LRGS (Nal, Plastic Scintillator) - HRGS (HPGe) - MRGS (CZT) Gamma Imaging # NDA System Types - Neutron - Using Neutrons - Total neutron counting - Passive neutron coincidence (for Pu) - Active neutron techniques (for U or Pu) - Active well - Cf-Shuffler - DDA © 2024 Mirion Technologies . All rights reserved. # **Technology Building Blocks** Real-Time X-Radiography RoboCount mobile HRGS Complementary technologies from outside partners / suppliers - Outside laboratories - X-Radiography - n sources & generators - Robotics - Specialist mechanics Control, Electronics & processing - 3He tubes - · Alternative n detectors - γ detectors: Ge, NaI, LaBr, CZT, Plastic scintillators - Neutron analysers (Shift Registers) - Amplifiers for n detectors - Mixer units - Physics methods, algorithms & IP - Licensed analysis codes Conveyors & Automation - Electrical Engineering, sw & Physics experts - Software coding for physics algorithms - · User interaction with system - Data reporting - Data storage ### Content #### **ACCURACY IMPROVEMENT** - Complimentary technologies - Advanced ISOCS tools #### **DEPLOYMENT FLEXIBILITY** - Modelling - Robotics / Automation # Complementary Technology # Gamma NDA Systems #### Key driver in waste assay: - Avoid over-sentencing - => Reducing the uncertainty (TMU) #### Main uncertainty components: - · Source distribution in the drum - · Matrix distribution in the drum # Gamma NDA Systems with transmission source - Segmented Gamma Scanner - Scanner - Tomographic Gamma Scanner density <u>vertical</u> heterogeneity Reduces uncertainty from activity and Greatly improves uncertainty on both activity and density distribution (3D) # CT X-ray: an attenuation estimate - Outputs 3D pixel map of gray values (relative X-ray attenuation): - Very fine spatial resolution (sub-mm) - Relation between gray value and material/density - Varies with CT system setup (Energy/filters/...) - Needs to be characterized - Can provide equivalent material/density with similar attenuation # Test drum Creation & Scan # User analysis # Use for gamma analysis Activities evaluated with efficiency curve based on: - Observed geometry - Equiprobable distribution of source (in photons/s/g) among items and matrix Bias correction (compared to homogeneous case): - · up to 14% bias - higher than worst case a priori underestimation for matrix heterogeneity (Ei>662keV). #### TMU range: - slightly improved - but source position uncertainty (main component) considered unchanged # "ISOCS for Neutrons" - The LINAS is a large, shielded, passive neutron detection system used for quantifying the holdup mass in plant equipment. - The system was built for the Paducah Gaseous Diffusion Plant (GDP) cascade equipment up to 13.5 feet (~4 meters) in diameter and 24 feet (~7 meters) in length. - Prior to disposition, the extracted plant equipment must be characterized for fissile (U-235) content - Consists of cells containing several large pieces of plant equipment. - Each cell contains a closed system consisting of compressors, converters, coolers, gate valves, pipes, etc. - Heated UF6 gas is "forced" into the vacuum but kept less than 1 atm. - The converters contain a permeable nickel membrane (barrier) where the forced UF6 gas separates **U-234 and U-235 from U-238**. - There are 100's of cells in a single building (step-wise fractional increase of the enrichment) - The series of cells is called a cascade - Process Knowledge is known (enrichment, isotopics and/or U-235:U-234 ratio). # LINAS Data Quality Objectives (DQOs) - Accommodate objects (plant equipment) as large as the '000' converter and objects as small as 24" diameter pipe and 20' intermodal and Sealand waste containers. - Objects will be transported via large carts with support cradles and will be included in the measurement - U-235 Minimal Detectable Activity (MDA) of 25 grams or less for any given object and from any cascade - Total Measurement Uncertainty (TMU) of 35% or less, 1-sigma, for any given object. - Uniform detection efficiency as much as possible over object volume - Throughput capability of 10 or more objects per day - Target measurement time of 30 minutes. - Service period of several decades #### **Technical** - Cosmic Ray Spallation (CRS) neutron background: Presence of metal - Metal content also alters the system detection efficiency - Hydrolyzation impact on assumed neutron-specific activity #### Logistical - Requires the neutron detection efficiency of each and every plant equipment type, and associated metallic weight, occupying a specified volume and location within the assay chamber. - MCNP can be cumbersome, time consuming with no simple method for quality control. - Wide variety of objects requiring a variety of calibrations (and verifications) - Large-scale measurement campaign: individual objects, surface area, number of objects - Coordination between multiple vendors and participants # LINAS - Design: Neutron Detection Rings - Neutron detector slabs in three rings 5 slabs per ring arranged at 60° intervals - Thick concrete shielding # New Approach for efficiency calibration - Provide a simplified efficiency generation method that is quality controlled, with the lowest possible Total Measurement Uncertainty (TMU) - The NeutVox method involves: voxelization of the neutron detection efficiency throughout the entire volume of the LINAS chamber - Applying that technique to generate an efficiency map for any type of plant equipment as well for any object shape and weight that will fit within the LINAS chamber. ### Basis of NeutVox approach - Complete Pre-characterisation of efficiency by MCNP6.2 for each slab for sources in 3 dimensional voxels (approx. 9000) inside the measurement cavity - Method to determine summed slabs efficiency for specified source distribution across voxels - Matrix correction process to deal with impact of varying density of metal - Cross-section (Z-plane) of the voxel grid within the LINAS chamber. - The inside circle represents a crosssection of the volume occupied by the largest plant equipment object which is the 000 converter (13.5' x 24'). - Each voxel center that is within the 000 converter volume is assigned a zerodensity efficiency computed from MCNP. Dot-product analysis to determine summed slabs efficiency for specified source distribution across voxels Figure to the right shows a cylinder in the LINAS chamber intersecting several voxels. The interest is the points at the voxel centers. The dot-product method involves the following two test criteria: • Test #1: $z_{-} < \widehat{D} \cdot (X_{p} - C) < z_{+}$ • Test #2: $||r_p|| < ||r||$ - Compute the fractional volume (v) of the object relative to the 000 converter. - Compute the average density (ρ) of the object from the gross weight subtracting the cart/cradle weights. - Table shows the metals matrix efficiency delta as a function of the relative fractional volume and the object average density. - The metals matrix correction is computed with the parameterization shown below. - Matrix correction > 1 for objects < 40,000 pounds and < 1 for objects > 40,000 pounds. Table 2 Fractional difference in efficiency between the higher-density samples and the 0-density sample. | Volume | | | | | | | | | |-----------|---------|---------|--------|--------|--------|--------|--------|--------| | | | | | | | | | | | Density \ | 0.125 | 0.244 | 0.330 | 0.422 | 0.549 | 0.670 | 0.849 | 1.000 | | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.2 | -0.0088 | -0.0096 | 0.0033 | 0.0101 | 0.0134 | 0.0191 | 0.0296 | 0.0359 | | 0.4 | 0.0023 | -0.0112 | 0.0260 | 0.0285 | 0.0255 | 0.0362 | 0.0470 | 0.0579 | | 0.6 | -0.0041 | 0.0056 | 0.0334 | 0.0469 | 0.0514 | 0.0478 | 0.0662 | 0.0837 | | 0.8 | -0.0027 | 0.0006 | 0.0258 | 0.0458 | 0.0426 | 0.0439 | 0.0646 | 0.0979 | | 1 | -0.0045 | -0.0002 | 0.0307 | 0.0285 | 0.0478 | 0.0389 | 0.0677 | 0.0830 | | 1.2 | -0.0041 | -0.0117 | 0.0292 | 0.0270 | 0.0310 | 0.0303 | 0.0413 | 0.0651 | $$f(v,\rho) = \begin{cases} 1 & \text{if } v < 0.2\\ 1 + (v - 0.2) * (-0.17429)\rho^2 + (v - 0.2) * 0.27422\rho & \text{if } v \ge 0.2 \end{cases}$$ # Benefits for bulk waste assay - Concept is similar to ISOCS: but sub-voxel efficiencies are determined by MCNP 6.2 and has the full MCNP6.2 neutron physics - Allows efficiency calculation for specified source-term variations, using automated and rapid analysis → (results in seconds) - Provides an uncertainty estimation tool where undefined source distribution and object location distribution can be studied systematically - Scaleable to other systems / geometries ### Validation: Slab efficiency characterisation - Initial slab characterisation with MCNP6.2 - 252Cf source in near-contact and at distance. - Compare MCNP6.2 with experiment | Number of
He-3
counters per
slab | Measurement
Configuration | Experimental
measurement at
29.5 cm, % | MCNP at 29.5
cm, % | Exp./MCNP
rel. | |---|------------------------------|--|-----------------------|-------------------| | | Concrete floor | 3.55 | N/A | N/A | | Six counters | Aluminum
table | 2.83 | 2.89 | 0.98 | | | Concrete floor | 4.2 | N/A | N/A | | Eight
counters | Aluminum
table | 3.34 | 3.39 | 0.99 | The blue marks indicate the measurement positions of the neutron source relative to each PAD (Pad 1, Pad 2, and Pad 3). The detection efficiencies were measured with the 252 Cf at distances of \approx 0 cm and at \approx 29.5 cm (six counter slab). #### NeutVox validation Sample objects modelled as "complete MCNP 6.2 model" and then compared with NeutVox Various surrogate items provided for testing Gate valve Crushed bundle OO compressor Engage. Explore. Empower. © 2024 Mirion Technologies. All rights reserved. # TMU analysis | Sample Object | Volume
(ft³) | Volume
(cm³) | RSD (%) | |---|-----------------|----------------------|---------| | Large Cylinder
(18' x 9') | 690 | 1.95·10 ⁷ | 11 | | ST-90 Box
(79" x 46" x 47") | 100 | 2.79⋅10⁵ | 3.0 | | Intermodal (65%)
(230" x 85" x 61") | 690 | 1.95·10 ⁷ | 11 | | Intermodal (100%)
(230" x 92" x 94") | 1150 | 3.32·10 ⁷ | 15 | | Pipe
(19' x 30") | 93 | 2.64·10 ⁶ | 7.3 | | Gate Valve
(114" x 43" x 25") | 70 | 2.05·10 ⁶ | 3.5 | | York Recycle Cooler
(180" x 80") | 520 | 1.48·107 | 7.7 | | Trane Recycle Cooler
(147" x 130") | 1130 | 3.20·10 ⁷ | 15 | | 10 MW Freezer Sublimer
(64" x 49") | 71 | 2.00·10 ⁶ | 2.7 | | 20 MW Freezer Sublimer
(100" x 58") | 150 | 4.37·10 ⁶ | 3.5 | | 00 Compressor (unif.)
(155" x 55") | 230 | 6.62·10 ⁶ | 4.0 | | 000 Compressor (unif.)
(208" x 75") | 530 | 1.50·107 | 5.8 | Impact of source heterogeneity | TMU Contributor | RSD (%) | |---|---------| | Sample Type & Enrichment | 7 | | (combined) | | | Counting Statistics * | 15 | | Background Variation
Correction Factor | 1 | | Modeling | 7 | | Sample Geometry | 14 | | Estimated TMU: | 23 | Example overall TMU budget (30 inch gate valve) # LINAS Results - TMU | TMU Contributor | % RSD | |---|-------| | Sample Type & Enrichment | 7 | | Counting Statistics ^A | 15 | | Background Variation
Correction Factor | 1 | | Modeling | 7 | | Sample Geometry | 14 | | Estimated TMU: | 23 | $$TMU = \sqrt{\sigma_{ST}^2 + \sigma_E^2 + \sigma_{MODEL}^2 + \sigma_{SIG}^2 + \sigma_{BKGD}^2 + \sigma_{GEO}^2}$$ Sample type - Variations in nSA, e.g., "wet" vs. "dry", UO2F2 mixing with UF6 Model - Uncertainty in the efficiency attributable to modeling Geometry - Uncertainty in the efficiency attributable to geometrical variations: Target TMU: 35% 1-sigma ^AThe % RSD contribution from counting statistics represents an example value drawn from the V&V measurements corresponding to equipment with a low mass (5.37 g U-235) of depleted uranium (DU) and a count time of 900 seconds. ### LINAS – Summary - Characterizing uranium holdup in large-scale metallic plant equipment at Paducah GDP - Minimum Detection Activity (MDA) - < 25 grams of U-235 (<15 g for most items) - Measurement times 600 1800 seconds - Total Measurement Uncertainty (TMU) < 25% - NeutVox generalized calibration proven and scaleable for many object types and heterogeneous activity #### LINAS & NeutVox- References - https://www.energy.gov/em/articles/paducah-completes-first-kind-scanning-facility - https://www.energy.gov/em/articles/new-paducah-facility-ensure-safe-disposal-processbuilding-equipment - Design, Implementation and Validation of the Large Item Neutron Assay System (LINAS) at the Paducah Gaseous Diffusion Plant (PGDP) WM2024 conference presentation (March 2024) - Neutron Efficiency Voxelization Needs for Waste Characterization of Large Plant Equipment Uranium Holdup at the Paducah Gaseous Diffusion Plant (PGDP) INMM2024 conference presentation (July 2024) # Robotic NDA deployment # Robotic Deployment – Nothing Fancy #### Mount detector on Robot Usage of proven robotics technology - Accuracy - Reliability ### New Flexible Robotic Deployment Bring the detector to the object - Improved flexibility for multiple geometries - Can move detector instead of rotate object - Allows access to confined areas where cannot remove the objects to assay station - Building Block Technology Approach - Industry partnerships for robotics supply # Robotics - Benefits #### DuAL RoboCountTM 2020 The project RoboCount was started with the intention of disrupting the current market of industrial radiation measurement by achieving the following: - decrease the number of sensors necessary to carry out a measurement - remove the limitation of only being able to measure objects of a specific shape - remove the reliance on a proprietary OS - remove the need for conveyors and turntables - reduce the space necessary for the installation of the system The aim of the project was to set up a pilot system that would demonstrate the ability to achieve as many of the above-mentioned goals as possible on a limited budget. # 2024 developments – "Robotised NDA System" - Detector scans an object in a programmable way - The same hardware can scan: - Multiple objects - Multiple geometries (e.g. far-field, SGS) - Compatible with Mirion NDA2000 for: - PLC interface - ISOCS models and collimation - Advanced scanning protocols - TMU analysis engines # Combination of 3D mapping and Robotics: Introduced at MC2023 - Establishing Robotics suppliers partners in industry and academia - R&D program in Germany with AINT, coupling laser scanning for object recognition, with automated HPGe gamma spectrometry scan and SUPERISOCS 2024 developments – "Waste Sort n Seg" - 3D camera to identify shape - LIDAR for dimensioning - Object Recognition (AI) - Use Robot arm with detector for "Sort and Segregate" - And haptic feedback robot for "pick and place" - Candidate detector = application-dependent: - Surface contamination - Gamma Spectrometry (LRGS, HRGS, MRGS) - Dose-rate - Integrate Advanced ISOCS ("SUPERISOCS") modelling AINT: KONTEC 2023 # Thank you